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available inputs, representing the steering and translational actuators of the pulling cart,even though systems with more steering inputs have been studied in [Bushnell et al. 1993]and [Tilbury et al. 1995]. The number of trailers can be increased at will: adding a trailersimplymeans adding a nonholonomic constraint to the system or, equivalently, an orientationangle to the con�guration space.The usual model for the pulling cart and for the trailers consists of a single axle with twowheels that are assumed parallel, neglecting, in the steering pair, the di�erence due to the factthat rotations must occur around a single center of rotation, see [Alexander and Maddox 1988].Each axle is hitched to the preceding trailer by means of a rigid bar. In the case ex-tensively treated in the literature, starting from Laumond [Laumond 1990], every axle ishitched exactly in the middle of the axle in front of it, i.e. only axle-to-axle connection arepresent. We will call this the standard n-trailer problem. A rich literature has grown for thestandard n-trailer problem dealing with controllability [Laumond 1990], open loop motiongeneration [Murray and Sastry 1993], [Rouchon et al. 1993], closed loop control strategies[Bloch et al. 1992], [S�rdalen 1993b] and many others (see [Kolmanovsky and McClamroch 1995]for a survey) for di�erent control problems like point stabilization, point tracking or pathfollowing. The peculiarity of this kind of system is that its nonholonomic structure, which`permits' controllability even if the system is underactuated, is directly visible in the modelformulation as a collection of nonholonomic constraints on the velocity. In geometric terms,the n-trailer can be seen as an higher order contact manifold whose de�ning functions arethe set of non-integrable one forms corresponding to the velocity constraints on the wheels.In particular, it was shown in [S�rdalen 1993a] and [Tilbury et al. 1995] that the resultingsystem can be converted into a particular canonical form, called chained form for whichthe handling of the above mentioned problems result simpli�ed. The chained form was�rst introduced by [Murray and Sastry 1993] as a particular class of equations for drift-less systems. Although nonlinear, it has an underlying linear structure, reminiscent of theBrunovsky normal form. Since it was introduced, the chained form has been extensively usedto treat all of the relevant control problems of the nonholonomic systems, see [Samson 1995],[S�rdalen and Egeland 1995] for instance. In [Tilbury et al. 1995], a connection was madewith its dual, the so-called Goursat normal form in the language of the exterior di�eren-tial systems. The 2-input chained form was extended to multi chained form (intended asmulti-input single generator chained form) in [Tilbury et al. 1995], to take into account morecomplex systems with more that one steering input. An application of 3-input chained formwas the �re-truck example presented in [Bushnell et al. 1993].In many practical situations, the standard n-trailer is not a realistic con�guration: infact, to improve maneuverability or due to the cumbersome shape of the trailer body, ithappens that a trailer can be attached not exactly in the middle of the preceding axle butat a positive distance from it. When one or more trailers present o�-hitching, we will namethe system general n-trailer. Examples of such systems are the truck and trailers that wenormally see on our highways or a real car pulling a trailer, or special articulated vehicles,like the so-called LHD (Load-Haul-Dump) a two-axle truck used for mining applications,[Alta�ni 1999].Including kingpin hitches into the kinematics of the n-trailer results into an extra numberof terms that need to be added to the basic dynamic equations. This suggests that some of the2



techniques for the standard n-trailer can be generalized to our system. In particular, resultson controllability obtained by [Laumond 1990, Murray and Sastry 1993] can be extendedquite directly. We will check local controllability in two di�erent ways: �rst via the rank ofthe control Lie algebra as is normally done; then in the dual way, calculating the derivativeag of the Pfa�an system which is obtained from the dual representation of the generaln-trailer. The comparison of the two procedures is quite interesting: as is often the case, thelocal maximal nonintegrability condition is much easier to check on the dual system.The above mentioned extra terms in the kinematics corresponds to irregularities that`break the chain' that constitute the `backbone' of the n-trailer system so that the global 2-input chained form is lost. We will show, however, that this breaking points (the o�-hitchingjoints) can be substituted by `virtual' passive steering wheels whose steering angle is uniquelydetermined by the con�guration state by means of nonlinear feedback. Each virtual steeringwheel corresponds to an internal feedback loop from the con�guration state of the system.Opening all these feedback loops, we have a multisteering n-trailer system for which a multi-input chained form exists [Tilbury et al. 1995]. All the chains admit the same generatorand this generator is the `classical' one used for the 2-input chained form for the standardn-trailer. Since the general n trailer has only two degrees of freedom (i.e. two inputs), thefeedback of the virtual steering wheels will take the place of the exogenous input used in[Tilbury et al. 1995] and will link two consecutive chains. This is equivalent to consideronly a particular submanifold of the multisteering n-trailer system and it corresponds tothink of the general n-trailer as an embedding into the multisteering n-trailer. Moreover,our chained form results simpli�ed with respect to [Tilbury et al. 1995] in the sense that nodynamic extension of the system is needed.The more complex nature of the system reects in an higher number of singularities whencompared to the standard case, see [Jean 1996]. We give a physical interpretation of theseextra singularities in terms of the steering angles of the above mentioned virtual wheels.Whenever possible, we carry out explicit calculations for the cartesian frame we choose.In fact, one of the main advantages of the n-trailer con�guration is that it has a state spacedescription which is simple enough to allow writing down and manipulate exact formulasin the original coordinate setting for both the primal and the dual representations of thesystem, even for a generic number of trailers. The resulting formulae we get are somewhatlengthy, but we do not think that this is obscuring their geometric properties.2 Mathematical preliminariesThe material in the present Section is largely taken from standard textbooks in NonlinearControl like [Isirori 1995, Nijmeijer and van der Shaft 1990] and from [Abraham et al. 1983,Bryant et al. 1991] for the basic facts about exterior systems and di�erential forms. A morethorough presentation of this material in the same context of Mobile Robotics can also befound in [Pappas et al. 1998, Tilbury et al. 1995].3



2.1 Underactuated drift-free nonlinear systemsDe�nition 1 An underactuated drift-free control-a�ne nonlinear control system is a collec-tion of r di�erential equations in the variables x and ui; i = 1; : : : r_x = rXi=1 gi(x)ui (1)where x 2 D � Rq with q > r and gi are input vector �elds gi : D ! Rq. We assume thatD contains the point x0 of Rq.The expression (1) can be intended as a representation in a local cover (D; x = (x1; : : : xq))of a point p leaving on an abstract manifold M . The tangent space at p 2 M is indicatedwith TpM and its expression in the local coordinate chart x as TxM . The tangent spaceTpM has the same dimension of the manifold M .De�nition 2 The distribution � associated with the control system (1) is a collection ofindependent vector �elds gi. On each point x 2 D the distribution � gives a vector subspaceof TxM : �(x) = span fg1(x); : : : gr(x)g x 2 D (2)We assume gi to be C1(D) and x0 to be a regular point of � i.e. dim�(x) = r 8x 2 D.For the particular kind of system studied in this paper, the dual point of view of thedistribution is particularly interesting because, as we will show below, it corresponds tohighlight the nonholonomic constraints of the system. If we call T �pM (T �xM in coordinates)the cotangent space, dual to TpM , then we have:De�nition 3 A codistribution I associated with the control system (1) is a collection ofs = q � r smooth and linearly independent (over the ring of smooth functions) covector �elds�j that annihilate � on each point x 2 D:I(x) = span��1(x); : : : ; �s(x)	 j = 1; : : : ; s= ��j(x) 2 T �xM s:t: < �j(x); gi(x) >= 0 8j = 1; : : : ; s; i = 1; : : : ; r	 (3)We assume to work in a domain D in which the one-forms �j(x) are C1 sections of theexterior algebra over T �xM and the codistribution I is a smooth assignment (and therefore,at each point x , a vector subspace of T �xM) both with respect to the wedge product, i.e. thealternating (normalized) tensor product. What (3) says is that, in coordinates, the one-forms�j(x) can be written as a s�r matrix such that the gi(x) constitute a basis for the right nullspace of this matrix. Then, if we want to be able to use the machinery of exterior di�erentialsystems, we have to endow the codistribution I with some extra structure in order to makesure that the solution of our collection of one-forms is indeed an integrable distribution. Thisproperty correspond to the regularity assumption of a point in the distribution case. Such aspecial case of codistribution is called a Pfa�an system.De�nition 4 The codistribution formed by the smooth and independent one-forms I =f�1; : : : ; �sg is said a Pfa�an system if it generates an ideal I which is closed under exteriordi�erentiation. 4



The ideal generated by I isI = ��i ^ � s:t: �i 2 I; � 2 
(M)	where 
(M) is the module of smooth exterior di�erential forms of all orders on M .2.2 Local controllability for underactuated systemsA fundamental (and well-studied) issue to deal with for underactuated systems is control-lability, see [Nijmeijer and van der Shaft 1990] or, for example, the classical survey paper[Hermann and Krener 1977]. In what follows we are interested only in the local propertiesaround a regular point x0.De�nition 5 The system (1) is said small-time locally controllable at x0 2 D if we canreach nearby points in arbitrarily small amounts of time remaining in D.It is well-known that the notion of local controllability (which coincides with local strongaccessibility for drift-free systems) can be checked in geometric terms by considering thespan of the commutators of the vector �elds that generate the system. This idea is strictlyconnected with that of involutive distribution via the Frobenius theorem that gives necessaryand su�cient condition for (local) complete integrability of a distribution. This is essentiallyequivalent to say that the annihilator space of � has to be spanned by exact di�erentials,at least locally.The fundamental tool to test local controllability is the Chow theorem which asserts thata system is locally controllable if and only if it is maximally nonintegrable.The vector �elds of �, together with their commutators, form an algebra, called thecontrol Lie algebra. In order to construct it, one has to build a �ltration, patching togetherthe vector �elds of � and all the new independent commutators produced at each level ofLie bracketing �0 = �, �i = span f�i�1 + [�i�1; �i�1]g ; such that�0 � �1 � : : : � �k (4)for some �nite k. Di�erent rules for building the above �ltration are given in [Laumond 1993a,Laumond 1993b, Murray and Sastry 1993]. In a regular point, the dimension of the �ltra-tion (called the growth vector) stabilizes in correspondence of the control Lie algebra. Wehave local controllability when the rank of the control Lie algebra is equal to the dimensionof the tangent space.A dual characterization can be carried out for the Pfa�an system corresponding to (1).In particular, dually to the �ltration (4), we can construct a descending chains of Pfa�ansystems called derivative ag I(0) � I(1) � : : : � I(k) (5)where I(0) = I and I(j+1) = ��i =2 I(j) s:t: d�i � 0 mod I(j)	 is the derived Pfa�an systemof I(j). The expression d�i � 0 mod I(j) is called a congruence and means that the exteriorderivative of �i is a linear combination of the one-forms of I(j) (over the ideal I(j)), i.e.d�i ^ �1j ^ : : : ^ �sj = 0 8�lj 2 I(j). 5



Similarly to the �ltration, also the derivative ag stops at a certain k for regular points.The maximally nonholonomy condition can therefore be restated in terms of the derivativeag, saying that local controllability is equivalent to the existence of an integer k at whichthe derivative ag becomes empty: I(k) = 0.To have controllability, the bottom system of the derivative ag, which is always inte-grable by the Frobenius theorem, has to be empty. This implies that there is no integrablesubsystem of the original system, i.e. the solution trajectories of I are not constraints to lieon a leave of a (nontrivial) foliation of M .2.3 SingularitiesRegularity of x0 means that the distribution � does not loose rank in the neighborhood Dof x0. A similar condition is of interest for the �ltration (4). If the dimension of the entiresequence (4) is constant in D, then we call x0 regular with respect to the �ltration, in orderto distinguish from the regularity with respect to � only.De�nition 6 A point x0 which is not regular with respect to the �ltration is said singular.All the singular points of the system form the so-called singular locus of the system. Theknowledge of the singular locus is important when checking controllability: in fact in corre-spondence of such a zero dimensional submanifold, the number of Lie bracketing operationsneeded to span the whole tangent space is di�erent from the points which are regular withrespect to the �ltration. The complexity of such a check (which is proportional to thecomplexity of a steering algorithm for the system) obviously increases in the singular points.2.4 Embedding mapThe next concept we need is that of embedding map of a manifold.De�nition 7 Given two smooth manifolds M1 and M2 with dim(M1) = q1 and dim(M2) =q2, q1 � q2, the C1 map f :M1 !M2 is called a local immersion of x 2 M1 if there existsa neighborhood D 2M1 of x0 such that rankf(x) = q1 8x 2 D.So a map betweenmanifolds is an immersion if it has the same rank as the domain. Obviouslythe rank is independent of the local chart used.When an immersion is `well-behaved' it is called an embedding. For well-behaved wemean that it has to be an isomorphism onto its image with respect to the topology inducedfrom the corresponding Rq1 by the local chart used [Spivak 1979].De�nition 8 The C1 map f : M1 ! M2 is an embedding if it is an immersion and it isan homomorphism onto its image.Moreover, we have the following de�nition:De�nition 9 SupposeM1 �M2. M1 is a submanifold ofM2 if the identity map id :M1 !M2is embedding. 6



3 Kinematic model for the general n-trailerSuppose we have a generalized n-trailer system with m (m � n) of the trailers not directlyattached at the center of the previous axle but at a positive distance Mi from this point.Assume that each body is composed of one single axle, this being equivalent to the casewhere 2-axis bodies are present, modulo a state feedback (see [Tilbury et al. 1995]). The
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the two trailers �i � �i+1 is changing with high rate. Obviously, both eq. (8) and eq. (9)reduce to the well-known equations for the standard n-trailer problem when no o�-hitchingis present, namely when Mi = 0.The n-trailer system has two physical inputs, corresponding to translational and steeringactions of the car pulling the trailers. Calling �1 4= �0 � �1, at the kinematic level we canconsider these two inputs to be the steering speed !0 = _�1 = _�0 � _�1 and the translationalspeed v0 of the driving cart. Alternatively as steering input we can consider the following:!0 = _�0 = v0 sin�1 + L1 _�1L1 +M0 cos�1To complete the state space model of the general n-trailer system, we need the cartesiancoordinates of one of the middle points of the axles: for the purposes of proving controllabilityit is convenient to choose (x0; y0) of the driving cart,_x0 = v0 cos �0 (10)_y0 = v0 sin �0 (11)whereas it has been shown in [S�rdalen 1993a] for the standard n-trailer problem, thatchoosing the ones of the last trailer is particularly signi�cant when the task is to transform thesystem into chained form, because it is connected to di�erential atness [Fliess et al. 1995]._xn = vn cos �n (12)_yn = vn sin �n (13)In fact, the coordinates xn and yn correspond to the so-called at outputs for the standardn-trailer. In both cases, an ad hoc selection of the cartesian coordinates greatly simpli�esthe calculations.The relation between v0 and vn will be derived in Section 9.4 The virtual steering wheelsThe basic idea is that the n-trailer system with m o�-hitching joints can be converted intoan n +m-trailer system with m + 1 steering axles, adding a steerable wheel at each of theaforementioned joints not directly hitched on the preceding axle. These m virtual steeringwheels are passive, in the sense that their steering angles are (uniquely) determined by thecon�guration and by the dynamic equations of the system. This is equivalent to say thattheir inputs are obtained by means of feedback from the con�guration of the system andonly the driving unit has exogenous input.First we prove that a passive steering wheel is indeed admissible by the system and then,in Section 6, we show that these virtual steering wheels provide physical insight into theextra singularities of the system due to the kingpin hitching.Proposition 1 Consider the 2-trailer o�-hitching connection between the trailers i and i+1.This subsystem is equivalent to a standard 3-trailer system with a steering wheel in the middle8
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5 Comparison between standard and general n-trailersystemsIn what follows it is convenient to use the following notation: we call n1; : : : ; nm, nj<nj+1,nm<n the indices of the axles having nonnull o�-hitching (Mnj 6= 0). We can group togetherthe axles between two consecutive steering wheels: f0; 1; : : : ; n1g ; : : : ; fnj�1 + 1; : : : ; nj � 1; njg ;: : : ; fnm + 1; : : : ; n� 1; ng. Each of the groups of axles, together with the steering wheelin front of it, will constitute a steering train. In case of two consecutive axles having o�-hitching, then a steering train is reduced to a single axle. We call this a degenerate steeringtrain. With this notation we can rewrite the dynamic equations of the orientation angles ofthe general n-trailer problem as:_�nj+1 = vnj+1 tan(�nj � �nj+1)Lnj+1 � Mnj _�njLnj+1 cos(�nj � �nj+1) (16)vnj+1 = vnj cos(�nj � �nj+1) +Mnj sin(�nj � �nj+1) _�nj (17)j 2 f1; : : : ;mg_�nj�i = vnj�i tan(�nj�i�1 � �nj�i)Lnj�i (18)vnj�i = vnj�i�1 cos(�nj�i�1 � �nj�i) (19)with j 2 f1; : : : ;m+ 1g , i 2 f0; 1; : : : ; nj � nj�1 � 2g and nm+1 = n .We assume, in what follows, that the steering trains are not degenerate.In order to highlight the similarities of the dynamic eq. (16)-(19) with those of thestandard n-trailer it is convenient to rewrite them in terms of the relative orientation angles�i 4= �i�1 � �i, i 2 f1; : : : ; ng, expressing all vi as functions of v0 and using the cartesiancoordinates (x0; y0). The system becomes:_x0 = v0 cos �0 (20)_y0 = v0 sin �0 (21)_�0 = !0 (22)_�1 = �v0 sin�1L1 + !0 (23)_�nj+1 = v0 njYk=1cos �k!j�1Yk=1�1 + MnkLnk tan �nk tan �nk+1���tan �njLnj � sin�nj+1Lnj+1 + MnjLnjLnj+1 tan �nj cos �nj+1� (24)_�nj�i = v0 nj�i�1Yk=1cos �k!j�1Yk=1�1 + MnkLnk tan �nk tan �nk+1���tan �nj�i�1Lnj�i�1 � sin �nj�iLnj�i � (25)10



j 2 f1; : : : ;mg, i 2 f0; 1; : : : ; nj � nj�1 � 2g.Notice that equations (20)-(25) are everywhere well de�ned.Clearly, each of the components due to the kingpin hitching enters linearly into the systemas an extra term added to the basic dynamic equations of the standard n-trailer, which arereobtained choosing Mnj = 0:_x0 = v0 cos �0 (26)_y0 = v0 sin �0 (27)_�0 = !0 (28)_�1 = �v0 sin�1L1 + !0 (29)_�i+1 = v0 iYk=1 cos�k!�tan�iLi � sin�i+1Li+1 � (30)i 2 f1; : : : ; n� 1g.In the rest of the paper we will pass indi�erently form the coordinate system in theabsolute angles �i, i = 1; : : : ; n, to the other one in the relative orientation angles �i, i =1; : : : ; n, according to convenience.The Pfa�an system associated with (16)-(19) is simply the collection of one-forms (6)plus the equations between pairs of cartesian coordinates of two adjacent nodes (7). So theirregularities enter only into the holonomic relations linking two consecutive one-forms via akingpin hitch and propagate to their exterior derivatives:dxnj = dxnj+1 � Lnj+1 sin �nj+1d�nj+1 �Mnj sin �njd�njdynj = dynj+1 + Lnj+1 cos �nj+1d�nj+1 +Mnj cos �njd�njj 2 f1; : : : ;mg. When o�-hitching is missing instead we have:dxnj�i�1 = dxnj�i � Lnj�i sin �nj�id�nj�idynj�i�1 = dynj�i + Lnj�i cos �nj�id�nj�ij 2 f1; : : : ;m+ 1g, i 2 f0; 1; : : : ; nj � nj�1 � 2g. In order to recover the original con�gu-ration space dimension, we have to substitute into (6) the cartesian coordinates as functionsof one single axle. In a proper domain of de�nition (see below) we can rewrite the one-forms(6) in terms of congruences:dyi � tan �i dxi mod�i i 2 f0; 1; : : : ; ng (31)meaning with this expression that the congruence is satis�ed up to an element of the idealgenerated by �i i.e. dyi = tan �i dxi +  ^ �i for some  2 
(M) also satis�es it. In[Pappas et al. 1998] it is shown how to use the congruence to obtain a relation betweenthe exterior derivatives of the cartesian coordinates of two adjacent standard trailers. Thisis basically what we need in order to eliminate the holonomic constraints on the Pfa�ansystem. With the same notation convention used above, In the standard case, see Fig. 3 (a),11
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nonnull steering propagates more `in depth' in the chain of trailers than in the standardcon�guration, i.e. the change of the orientation angle in the trailer that follows the o�-axlehitch is inuenced not only by the orientation angle of the trailer in front of it as in thestandard case, but also by the one of second trailer ahead. When the system has degeneratesteering trains (i.e. it has two or more consecutive axles with kingpin hitching), the number ofone-forms involved into a relation like (34) is higher than three. We will see in Section 7 thatthis argument, in particular its formulation on the dual system, can help in understandingthe local controllability property of the general n-trailer.Putting together all equations for adjacent axles we get that the following propositionstill holds true also for the general n-trailer.Proposition 2 ( [Pappas et al. 1998], Lemma 42 ) The exterior derivatives of any of the xvariables are congruent modulo the Pfa�an system I:dxi � fxi;jdxj mod I:All the above reasoning has value only locally, in a (usually large enough) interval con-taining the origin. The set of points in which the model formulation is unde�ned is largerin the general n-trailer that in the standard n-trailer. Its physical meaning is explained innext Section.6 Singular locusThe index at which the �ltration stops at a point x0 is called the degree of nonholonomyof the system at x0. When x0 satis�es the Lie algebra rank condition then the system issaid maximally nonholonomic at x0. Singular points for the standard n-trailer system havethe physical meaning of orthogonal angles between consecutive trailers and they lead to adi�erent degree of nonholonomy, see [Jean 1996] for a complete discussion.For the general n-trailer, proposition 1 a�rms that a virtual steering wheel can be placedon the kingpin hitching nodes and gives a value for its steering angle. Furthermore, fromeq. (15) we see that the tangent of the virtual steering angle enters into the dynamic equationof the heading of the following trailer. Therefore one can ask whether the `virtual' singularityintroduced by tan j must be considered in the analysis of the controllability of the modelor less. The corresponding singular points can be rewritten using the formula:�j = arctan��Mnjvnj _�nj� = j � �nj+1as _�nj = � vnjMnj tan(j � �nj+1) = vnjLnj tan �njor, after some manipulations,tan j = tan �nj+1 � MnjLnj tan �nj1 + MnjLnj tan �nj+1 tan�nj (35)13



The singular point j ! �2 mod �is then equivalent to 1 + MnjLnj tan �nj+1 tan �nj ! 0: (36)With eq. (36), the question posed above can now easily be answered looking at eq. (24)-(25): the `virtual' singularities are indeed singular points of the control Lie algebra since�1 + MnjLnj tan �nj+1 tan �nj� = 0 implies that the vector �eld associated with the input v0has the last n�nj�1 components that are null. From eq. (24)-(25), also the cos �k have thesame e�ect of annulling the last n � k terms of the input vector �eld associated to v0. Theconsequence is that the Lie bracket cannot generate a full rank distribution with the samegrowth vector as in the nearby points. Similarly to the standard case, the proof should passthrough the computation of the �ltration (4). However, an informal argument can be givenby looking at the two vector �elds in (23)-(25): the vector �eld associated with the input !0has only the �rst component di�erent from zero and it is a constant, while the vector �eldrelative to v0 has a triangular structure. Therefore, whenever there are null components dueto cos �k or to �1 + MnjLnj tan�nj+1 tan �nj� all the remaining Lie brackets will be zero. Theselast extra singularities, which are not present in the standard n-trailer system, have then the`nice' physical interpretation of one of the virtual wheels being orthogonal to the velocityvector of the following trailer.To summarize: in the standard n-trailer we have that the singular locus is given by (see[Jean 1996]) SS = n�i = �2 mod �o ; i 2 f1; : : : ; ngwhereas, in the general n-trailer, it is larger:SG = n�i = �2 mod �o[nj = �2 mod �o (37)i 2 f1; : : : ; ng, j 2 f1; : : : ;mg .Like SS, SG is a set of measure zero in the con�guration space of the system.For the standard n-trailer there exist techniques that allow to calculate the exact valueof the degree of nonholonomy in the singular locus [Jean 1996]. Also for the general n-trailerit should be possible to obtain a similar procedure, although the basis of vector �elds at thesingular points might result even more complicated that the one proposed in [Jean 1996].Singular locus and domain of de�nition The singularity analysis mentioned above isnot invariant to the selection of coordinates for the system. In particular, it can be noticedthat the singular locus is related to the domain of de�nition of the kinematic model whenwe change the velocity input by means of a (locally) invertible transformation.In our case, if we assume to take as longitudinal input vn instead of v0, then the velocitiesof all the other trailers can be calculated consequently. For a generic axle n � i-th on the14
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nβ +1(b) general n-trailerFigure 4: Singular locus and connected component containing the origin in which the systemis regular with respect to the �ltration (grey areas) of the standard and general n-trailers.last steering train we get the usual formula:vn�i = vnQn�1l=n�i cos(�l � �l+1)whereas for the last trailer of the second-to-last steering train we have, if the m-th steeringtrain is not degenerate,vnm = vn�1 + MnmLnm tan(�nm�1 � �nm) tan(�nm � �nm+1)�Qn�1l=nm cos(�l � �l+1)The case of degenerate steering trains leads to a di�erent (more complicated) expression,according to the number of consecutive degenerate trains. For a generic axle nj � i ( i+1-threarmost trailer of the j-th steering train) we have:vnj�i = vnQmk=j �1 + MnkLnk tan(�nk�1 � �nk) tan(�nk � �nk+1)�Qn�1l=nj�i cos(�l � �l+1) (38)and for the pulling cart:v0 = vnQmk=1 �1 + MnkLnk tan(�nk�1 � �nk ) tan(�nk � �nk+1)�Qn�1l=0 cos(�l � �l+1)�M0 tan(�0��1)!0(39)For sake of simplicity, we assume that vn can be expressed as a homogeneous linear functionof of v0. This is equivalent to say that we do not want o�-hitching on the leading car(M0 = 0).So SG is now the set of points in which the equations (20)-(25) of the system, rewrittenas functions of vn are not de�ned. We would like to remark that this observation is truealso for the standard n-trailer, as can be easily deducted rewriting the equations (26)-(30) asfunctions of vn (with allMi = 0). What is interesting to notice is that in both cases the region15



inside the singular locus, depicted in Fig. 4, corresponds to the domain of de�nition (againconnected component containing the origin of the domain of de�nition) of the formulationthat takes vn as velocity input.7 Controllability of the general n-trailerOne of the major features of the nonholonomic wheeled systems is that they constitute aclass of systems for which the analysis on the Jacobian linearization often fails to give theright result, which can be instead obtained using nonlinear techniques. This is the case forthe controllability property: the standard n-trailer is not linearly controllable (it is a drift-free system and it is underactuated) but it was shown to be controllable by Laumond (seefor example [Laumond 1990]) using the methods described in Section 2. For this system, themain problem is to verify the rank condition for a generic value of n, which means the needof having an iterative procedure like the one proposed by Laumond [Laumond 1993b], andto cope with singularities. Out of the singularity locus it is possible to state a similar localproperty for the general n-trailer con�guration.Theorem 1 The general n-trailer system (20)-(25) is locally controllable out of the singularlocus SG.Proof. In our point of view it is interesting to see both the ways of checking localcontrollability given by the two dual versions of the Chow theorem reported in Section 2, viathe two practical iterative tests illustrated in the same Section. Therefore we show belowboth proofs in order to be able to make a comparison.Version 1: vector �eld formulation.Since the rigorous mathematical formulation requires a lot of bookkeeping without addinganything signi�cant to the discussion, we provide only a somewhat informal argument.Basically the proof is a direct consequence of the bilinearity of the Lie bracket operation:[X1 +X2; Y ] = [X1; Y ] + [X2; Y ]In fact, from eq. (20)-(25) we have that the vector �elds that form the distribution forthe general n-trailer �G = span fg1G; g2Gg can be written as the sum of the correspondingg1S ; g2S of the standard n-trailer plus an extra component on the vector �eld associated withthe tangential speed input v0: g1G = g1S + g1Hg2G = g2SThe �rst n1 + 3 components of g1H are equal to 0. If we call:pj 4= MnjLnj tan �nj tan�nj+1 j 2 f1; : : : ;mg16



then the generic nj + i+ 3 element of the vector g1H is:g1H [nj�i+3] =  nj�i�1Yk=1 cos�k! j�1Xk=10@ Xl(k)2C(k;j�1) �pl(1) � ::: � pl(k)�1A�tan �nj�i�1Lnj�i�1 � sin �nj�iLnj�i �where C(k; j� 1) is the set of possible combinations of k numbers in the �rst j � 1 integers.The component nj + 4, representing the equation of the axle immediately after the kingpinhitching, has a slightly di�erent expression:g1H [nj + 4] = �Qnjk=1 cos�k� Mnj tan�nj cos�nj+1LnjLnj+1+ �Qnjk=1 cos �k�Pj�1k=1 �Pl(k)2C(k) �pl(1) � : : : � pl(k)��� tan�njLnj � sin�nj+1Lnj+1 + Mnj tan�nj cos�nj+1LnjLnj+1 �Now, we can use the result of Laumond for the standard n-trailer. In [Laumond 1993b] afamily of vector �elds is proposed that generates the control Lie algebra for the standardn-trailer. The family is composed of n+3 vector �elds for any value of n. Out of the singularlocus SG, the result still holds also for our �G in the sense that the vector �elds of the familyremain independent as in the standard case. The rank condition being satis�ed, the system islocally controllable in any regular point. In the case of [Laumond 1993b], the controllabilityproperty was veri�ed everywhere. Here, due to the more complicated formulae, it is not easyto understand how to proceed at the singular points.Version 2: derivative ag analysis.We saw that the system is not controllable if the ideal generated by the Pfa�an system orby a nonempty subset of it satis�es the Frobenius theorem. So we use the derivative agto calculate the largest integrable subsystem of the codistribution I. In order to computethe derivative ag I(j), we need to calculate the exterior derivative of the constraints and todetermine the set of one-forms that each of those derivatives requires in order to be congruentto 0. When calculating the exterior derivative of one of the constraints �i, i 2 f0; 1; : : : ; ng,we obtain: d�i � d�i ^ dxicos �i mod �iwhere we have used the fact that the two-form d2xi is equal to 0 by de�nition of exteriorderivative. If we now substitute d�i with the corresponding expressions (32) or (33) accordingto whether the axle is connected without or with kingpin hitch to the trailer in front of it,then we obtain congruences to 0 in both cases, but modulo a di�erent set of constraints:d�nj�i � 0 mod �nj�i; �nj�i�1; j 2 f1; : : : ;m+ 1g ; i 2 f0; 1; : : : ; nj � nj�1 � 2gfor the standard connection, andd�nj+1 � 0 mod �nj�1; �nj ; �nj+1; j 2 f1; : : : ;mgfor the o�-axle hitches. So in the �rst case the exterior derivative is a linear combination oftwo one-forms (via coe�cient that are forms in 
(M) and wedge product) whereas in thesecond case the linear combination has to be done over three consecutive one-forms. This17



spoils the regularity of the derivative ag in the sense that any time you hit a kingpin hitchthe next derived Pfa�an system will loose two elements instead of one as in the standardcase. The derivative ag goes as follows:I(0) = f �0 �1 �2 : : : �n1�1 �n1 �n1+1 �n1+2 : : : �n gI(1) = f �1 �2 : : : �n1�1 �n1 �n1+1 �n1+2 : : : �n gI(2) = f �2 : : : �n1�1 �n1 �n1+1 �n1+2 : : : �n g...I(n1�1) = f �n1�1 �n1 �n1+1 �n1+2 : : : �n gI(n1) = f �n1 �n1+1 �n1+2 : : : �n gI(n1+1) = f �n1+2 : : : �n g...I(n�m) = f �n gI(n�m+1) = f 0 g (40)So the derivative ag ends (i.e. becomes empty) quicker than in the standard case (see[Pappas et al. 1998]). Therefore, by the Chow theorem for Pfa�an systems the system islocally controllable.Obviously, the veri�cation of controllability in a global sense requires more e�ort and atechnique like the one proposed by [Jean 1996] should be exploited, in order to deal withsingularity analysis.8 The general n-trailer as an embeddingIn Section 4, we showed that a passive steering wheel is indeed admissible by the system inany of the o�-axle joints. With the m virtual steering wheels, the system is `similar' (in asense to be de�ned) to a standard m+ n- trailer system with m+1 steering inputs with thepeculiarity that m of the m+1 steering inputs are not controls because they are �xed by thefeedback law (14). In fact, a fundamental property of a control is that it is a free parameter,independent of the con�guration state. The m virtual angles can be interpreted as feedbackloops where the feedback law is not chosen by the user but uniquely determined by thegeometry of the problem. If we open those m loops, we get a true n+m-trailer system withm+1 steering control inputs. Such a system lives on a manifoldMM of dimension n+2m+5characterized by n+m+3 states (2 cartesian coordinates, the usual n+1 orientation anglesof the nonsteerable trailers plus other m orientation angles for the steerable carts, called�i in Fig. 2) and m + 2 inputs (a longitudinal velocity and m + 1 steering inputs), see[Tilbury et al. 1995] for the details. If we now close the m loops for the extra steeringwheels according to the state feedback (14), we reobtain the general n-trailer (20)-(25) thatcan be considered as evolving on a manifold MG of dimension n + 5 ( n + 3 states plus2 inputs). So the virtual loops locally reduce the dimension of the manifold of 2m as thesteering feedback channels are used to `annihilate' the states corresponding to the angles ofthe steerable virtual carts with the e�ect of rigidly relate the �i to the preceding steeringangles �nj (�i = �nj after closing the loop). The following proposition states that applying18



the feedback law (14) to the multisteering n-trailer corresponds to embedding the generaln-trailer into the multisteering structure.Proposition 3 The general n-trailer (20)-(25) is an embedding of the multisteering n-trailervia the virtual feedback law (14).Proof. As seen above, the general n-trailer is evolving on the manifold MG of dimensionn + 5 and the multisteering n-trailer on MM of dimension n + 5 + 2m. Around the originwe are using a minimal representation for both systems i.e. locally the two manifolds aredi�eomorphic to euclidean spaces of the same dimension. Moreover, proposition 1 establisha locally well-de�ned map from MM to MG through the idea of virtual feedback loops.Therefore, by dimension counting this is an immersion map fromMG to MM . As the virtualfeedback de�ned by (14) is smooth and bounded in the sense that it uniformly tends to zerowhen the state of the multisteering n-trailer tends to zero, then locally the immersion mapdoes not introduce any strange phenomenon and it is a nice topological isomorphism ontoits image and therefore an embedding.The message here is the following: the application of feedback (14) to a multisteeringn-trailer restrict the system to a submanifold of its original manifoldMM . This submanifoldis nothing butMG, the manifold on which the general n-trailer is living. As usual, everythingthat happens on a proper submanifold has `measure zero' on the original manifold, but whatis really important here is that it is compatible with the bigger structure.It is important to remark that the virtual steering wheels introduced here are not dynamicprolongations of the system. In fact the general n-trailer and the multisteering n-trailerwith the m feedback loops considered here live in the same manifold so they have the samedimension. Indeed opening the feedback loops around the virtual steering wheels somethingelse is obtained, namely the true multisteering n-trailer.9 Conversion into chained formThe chained form for driftless nonlinear control systems is important because it correspondsto a particularly nice di�eomorphic representation of the original system with importantregularity properties.It has been shown in [Tilbury et al. 1995] that a standard multisteering n + m-trailersystem can be put into a multi-input chained form. The transformation consists, in prac-tice, in considering each subsystem of trailers between two consecutive steering wheels as achain with the last trailer of the train as bottom of the chain. The solution proposed by[Tilbury et al. 1995] holds for m+1 generic exogenous steering inputs, so it will continue tohold also under state feedback for the m new steering inputs.Transforming a system into chained form means applying a static change of input and astate di�eomorphism in order for the original system to appear `nicer' i.e. to have some extraproperties that simplify dealing with problems like motion planning, trajectory tracking,stabilization, etc. If the multisteering n-trailer can be converted into multiinput chainedform, what happens when we apply the virtual feedback (14)? Such a feedback is a smooth19



map ! : D ! Rmx 7! !(x)If we apply a di�eomorphism to the state x: : D ! Dx 7! z =  (x)then the feedback can be rewritten in terms of the new basis using the chain rule as! : D ! Rm (41) �1(z) 7! !( �1(z))As  (�) is a di�eomorphism, all the properties of the virtual feedback are preserved, thereforealso the embedding property and the identi�cation of MG with a submanifold of MM also inthe z coordinate chart. So it makes sense to convert the multisteering n-trailer into chainedform as in [Tilbury et al. 1995] and then apply the state feedback (14) transformed into thenew basis as in (41).Unlike [Tilbury et al. 1995], the resulting system does not need any dynamic prolonga-tion, the reason being that the bottom of each steering train is independent from the trailersfollowing behind.As mentioned above, the transformation to chained form is greatly simpli�ed when thecoordinates of the last trailer are considered, instead of the pulling car. In particular, thevelocity of the last trailer (rescaled by cos �n) results being the generator of the whole multi-input chain. The system can be split into m + 1 steering trains. Our aim is to transformthese m+1 subsystems into m+ 1 2-input chained forms, all with the same generator, onlythrough di�erentiation. The generating input will be proportional to vn. It is convenient tochoose as generating input v 4= vn cos �n because this give immediately _xn = v so that wecan choose the state of the short chain as zg 4= xn. The corresponding bottoms of the chainswill be the other cartesian coordinate for the last chain and the �nj , j 2 f1; : : : ;mg, i.e. theorientation angles of the trailers o�-hitched, for the �rst m chains. According to eq. (1), andto eq. (38), the dynamic equation for the orientation angle immediately following the j-thvirtual wheel can be written as:_�nj+1 = vnj+1Lnj+1 tan j (42)= v tan ��nj � �nj+1 + arctan��MnjLnj tan(�nj�1 � �nj )��Lnj+1Qmk=j+1 �1 + MnkLnk tan(�nk�1 � �nk ) tan(�nk � �nk+1)�Qnl=nj+1 cos(�l � �l+1)= v�tan ��nj � �nj+1�� MnjLnj tan(�nj�1 � �nj)�Lnj+1Qmk=j �1 + MnkLnk tan(�nk�1 � �nk ) tan(�nk � �nk+1)�Qnl=nj+1 cos(�l � �l+1)j 2 f1; : : : ;mg 20



where �n+1 = 0 and the generating input v has been put into evidence. It is convenient tode�ne the input of the j-th virtual wheel as!nj 4= _�nj+1 (43)so that the right side of eq. (42) will give the nonlinear state feedback that decides thesteering angle of the j-th passive steering wheel. Clearly, this feedback constitutes the linkbetween consecutive trains.Using eq. (38), also the dynamic equation of all the orientation angles can be expressedas a linear homogeneous function of the generating input v:_�nj�i = v tan(�nj�i�1 � �nj�i)Lnj�1Qmk=j �1 + MnkLnk tan(�nk�1 � �nk) tan(�nk � �nk+1)�Qnl=nj�i cos(�l � �l+1)4= vfnj�i ��nj�i�1�j 2 f1; : : : ;m+ 1g ; i 2 f0; 1; : : : ; nj � nj+1 � 2g ; nm+1 = n:where �i 4= [�i; �i+1; : : : ; �n]With these notations the dynamic of the general n-trailer system becomes:_xn = v_�nj�i = vfnj�i ��nj�i�1� (44)_�nj�1+1 = !j�1_yn = vfn+1 (�n)j 2 f1; : : : ;m+ 1g, i 2 f0; 1; : : : ; nj � nj+1 � 2g, with the !j obtained via feedback from thestate as in eq. (42). The con�guration space is then:q = [xn �0 �1 : : : �n yn]and we will consider the following domain for the change of coordinates:D = f q 2 R � (S1)n+1 �R : j�nj < �2 ; ���nj�i�1 � �nj�i�� < �2 ;�����nj � �nj+1 + arctan��MnjLnj tan(�nj�1 � �nj)����� < �2 ;j 2 f1; : : : ;m+ 1g ; i 2 f0; 1; : : : ; nj � nj+1 � 2g gBasically, Prop. 1 is su�cient to cast the general n-trailer problem into an m + 2 multi-chained form with m+ 1 chains corresponding to the m+ 1 steering trains identi�ed above,all having the same generator. However, the solution proposed by [Tilbury et al. 1995],due to the more generality of the problem (all exogenous inputs), requires to consider virtualtrailers to be attached in front of each of the existing steering trains in order to `decouple' the21



dynamics of each train from the preceding ones, through a dynamic feedback from the state.In our case this virtual extensions are not needed, because the dynamics of the steering trainsare already decoupled one from the other, i.e. each of the orientation angles �i depends onlyon what happens in front of it, except for the passive steering wheels that create a connectionbetween two consecutive chains. Therefore, in the following, we will transform each of thesteering trains into a 2-input chained form, all with the same generator.Theorem 2 There exists a local di�eomorphism that converts the system (44) into the multi-chained form:_zg = v _z0 = u0_z1 = vz0..._zn1 = vzn1�1 _zn1+1 = u1_zn1+2 = vzn1+1..._zn2 = vzn2�1 : : : _znm+1 = um_znm+2 = vznm+1..._zn = vzn�1_zn+1 = vzn (45)where v and u0 are exogenous inputs, while the m functions ui; i = 1; : : :m, are obtained via(nonlinear) feedback from the state.Proof.We can apply the algorithm of [S�rdalen 1993a] to each of the m+1 steering chains. Forthe last train, the chain will have an extra state (that will be called zn+1) with respect tothe other steering trains of the same length. The bottom of the chain is the second cartesiancoordinate of the last trailer zn+1 4= ynDi�erentiating with respect to time, we get:_yn = v tan �n = vfn+1 (�n) 4= v znand, di�erentiating again,_zn = v tan(�n�1 � �n)Ln cos3 �n = vLfnfn+1 4= v zn�1where we de�ne: f i 4= [fi fi+1 : : : fn]and Lfh is the Lie derivative of h along the vector f .For the �rstm steering trains we take as bottom of the corresponding chain the orientationangle of the trailer with o�-hitching (the last of each steering train):znj 4= �nj j 2 f1; 2; : : : ;mgUsing the generator v, the chained form is obtained from the bottom variables de�ned aboveusing the relation _znj�i+1 = _zgznj�i ) znj�i = _znj�i+1_zgj 2 f1; 2; : : : ;m+ 1g ; i 2 f1; 2; : : : ; nj � nj�1 � 1g22



by means of a sequence of time di�erentiations. To have the same structure in all the m+1chains despite the extra variable present in the last chain, we need to apply a `cosmetic'change of index, calling nm+1 = n + 1 (remember that, instead, we had de�ned beforenm+1 = n). Now, for all the m+ 1 chains we have:znj�1 = fnj ��nj�1�znj�2 = Lfnj�1fnj...znj�i = Lfnj�i+1Lfnj�i+2 : : :Lfnj�1fnj...znj�1+1 = Lfnj�1+2Lfnj�1+3 : : :Lfnj�2Lfnj�1fnjwith j 2 f1; 2; : : : ;m+ 1g and i 2 f1; 2; : : : ; nj � nj�1 � 1g. The �rst variable of each chainis znj�1+1 = znj�1+1 ��nj�1+1� so, when we derive, also the input !j�1 will appear into theexpression. Therefore we de�ne the new input uj�1 as:uj�1 4= _znj�1+1 = Lfnj�1+1Lfnj�1+2 : : :Lfnj�2Lfnj�1fnj (46)where fnj�1+1 = �!j�1 fnj�1+2 : : : fnm !m fnm+2 : : : fn+1� j 2 f1; : : :m+ 1gThis marks the end of the chain and holds also for the �rst chain, the one depending on thereal steering input !0. So, for example, for the second-to-last (m-th) chain, we will haveznm = �nmznm�1 = fnmznm�2 = Lfnm�1fnmwhere fnm�1 = [fnm�1 !m fnm+2 : : : fn+1]We know that, from the feedback law (43), the input is!m = !m ��nm�1�and it bridges between the m+1-th and m-th chains. On the other hand, !m does not enterinto the de�nition of the immediately following state znm (the bottom of the next chain),but only on the third one znm�2. So the `anomaly' introduced by the feedback in !m doesnot spoil the triangular structure of the change of base, since �nm�1 is already present alsoin fnm , i.e. in the second state of the new chain. This holds for all chains and we can write:fnj�i = fnj�i ��nj�i�1�23



for j 2 f1; : : :m+ 1g and i 2 f0; 1; : : : nj � nj�1 � 1g.If we call z 4= [zg z0 z1 : : : zn+1]T the new state vector in the chained form, then thetransformation above calculated, z = 	(q) (47)is a di�eomorphism in D. In fact, it is easily proven that the Jacobian @	@q is nonsingular inD, since it is upper diagonal with nonnull diagonal elements in D. The upper diagonal formof the Jacobian is a consequence of the aforementioned argument that each of the zi dependsonly on the orientation angles of the trailers up to the i-th one, not to what happens in frontof it: zi = zi (�i) i 2 f0; 1; : : : ngwhich implies that @zi@�i�k = 0 ifk > 0All the elements of the diagonal:@zg@xn ; @z0@�0 ; @z1@�1 ; : : : ; @znj@�nj ; @znj+1@�nj+1 : : : @zn+1@ynare certainly nonzero. In particular, for the last state znj j 2 f1; : : :m+ 1g of each chain andfor the generator zg, the corresponding diagonal element will be 1, while for the remainingstates znj�i j 2 f1; : : :m+ 1g i 2 f1; : : : nj � nj�1 � 1g it will be proportional to the term1cos2(�nj�i��nj�i+1) that corresponds to the derivative of a tangent function. This assures thenonsingularity of the Jacobian matrix in the domain D.Also the m + 2 input transformation can be easily shown to be well-de�ned in D. Wesaw in eq. (39) that the generating input v (for M0 = 0) can be obtained from v0. Withregard to the virtual and real steering inputs, eq. (46) says that the corresponding input inthe chained form uj, j 2 f1; : : :mg, is a function of the original inputs up to the j-th:uj = uj �!j ; !j+1; : : : ; !m; �nj�1� :Therefore also the input transformation is a local di�eomorphism.According to eq. (43), the input uj�1 can be thought of as state feedback from the existingstate: uj�1 = g �wj�1; �nj�1+1� = g ��nj�1�where now !j and �j can be considered as obtained from the inverse di�eomorphism of theabove described state and input transformations in a domain containing the origin.Unlike the standard n-trailer case, this transformation is not very much useful in practice:in fact, trying to squeeze down to `euclidean' the system along the regular parts of the chainsresults into an `explosion' of the expression of the nonlinear feedback for the virtual wheelswhich becomes dependent on partial derivatives of the whole state. Attaining an explicitexpression for the feedback in the new basis is quite prohibitive also for low-dimensionalcases, because it requires to have an explicit expression for the inverse of the di�eomorphism(47). 24



The chained form is known to be the dual canonical form of the so-called Goursat normalform for higher order contact manifolds, see [Bryant et al. 1991]. The fact that kingpinhitches spoils the transformation can be seen also from the derivative ag (40). The doubleloss of rank of the derived codistribution in correspondence to each o�-axle hooking impliesthat the basis used in the Goursat normal form theorem is not adapted to the derivativeag of I because one has to look for m integrable functions orthogonal to I (other that theusual � 6= 0 mod I) one for each kingpin hitch. In the same spirit as [Tilbury et al. 1995],it is possible to add virtual one-forms, corresponding to the virtual steering wheels, i.e. �rstorder prolongations to the system. The constraint !j on the j-th virtual steering wheel hasthe expression: !j = sin �jdxj � cos �jdyj = 0where (xj ; yj) are the cartesian coordinates of the kingpin hitch point and �j is the ori-entation angle of the virtual wheel. The corresponding dynamic equations can be easilycalculated from the geometry (see Fig. 2) and from the expression for the virtual feedbackcalculated in this Section. It can be seen that, although the virtual constraints `regularize'the derivative ag of the original system, the augmented system is still not regular. Addingsu�cient many dynamic prolongations (which have the meaning of other virtual trailersadded in front of the virtual steering wheels, see [Tilbury et al. 1995]), it is probably possi-ble to achieve a derivative ag with towers that decrease regularly (see [Bushnell et al. 1993]for details). However, the bottom line is that the new virtual steering angle, which is nowthe derivative of some order of the virtual steering angle j , is still going to have an expres-sion which is a function of the original state. In this augmented basis, (not yet transformedinto chained form) prolonging the virtual inputs means `prolonging the feedback law' i.e.adding terms to the virtual feedback (43) such that its new expression is a function of allthe orientation angle of the real system standing in front of the corresponding kingpin hitchfrom which the prolongation originates (and not a simple one....).10 ConclusionThe kinematic analysis of the so-called n-trailer system is usually limited to the special caseof axle-to-axle hitching between trailers. This is done not only for sake of simplicity, but alsobecause such a model presents a number of interesting properties which are (relatively) easyto verify, like nonlinear controllability, conversion into chained form or di�erential atness, alldue to the nonholonomic nature of the system. For the more general con�guration consideredin this paper, which includes also more realistic o�-axle connections between trailers, it isshown how to verify or interpret some of these properties normally used in the standardcon�guration.References[Abraham et al. 1983] ABRAHAM R., MARSDEN J.E. and RATIU T., 1983, Manifolds, tensoranalysis and applications (Springer-Verlag, 2nd ed.).25
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